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Abstract. This paper offers a survey of recent corpus-based work, which shows that dispersion is 
typically measured across the text files in a corpus. Systematic insights into the behavior of 
measures in such distributional settings are currently lacking, however. After a thorough 
discussion of six prominent indices, we investigate their behavior on relevant frequency 
distributions, which are designed to mimic actual corpus data. Our evaluation considers different 
distributional settings, i.e. various combinations of frequency and dispersion values. The primary 
focus is on the response of measures to relatively high and low sub-frequencies, i.e. texts in 
which the item or structure of interest is over- or underrepresented (if not absent). We develop a 
simple method for constructing sensitivity profiles, which allow us to draw instructive 
comparisons among measures. We observe that these profiles vary considerably across 
distributional settings. While D, DA and DP appear to show the most balanced response contours, 
our findings suggest that much work remains to be done to understand the performance of 
measures on items with normalized frequencies below 100 per million words. 

1. Introduction

Corpus linguists have at their disposal an ever-growing variety of dispersion measures. 
With the quantification of dispersion being an active area of methodological research, 
however, there is as yet relatively little guidance for the choice among them. The aim of the 
present paper is to contribute to our ongoing efforts to understand dispersion and its 
measurement, and to support an informed and constructive discourse on this area of corpus-
linguistic methodology.  

It deserves to be stressed at the outset that the term dispersion has acquired two (partly 
overlapping) corpus-linguistic senses.1 First, it may refer to the pervasiveness of an item (or 
structure) in a corpus, i.e. how widely it is used. Upon dividing a corpus into units, then, the 
focus is on whether or not an item occurs in a certain (stretch of) text, without taking into 
account the number of instances. In its second sense, the word dispersion denotes evenness 
of distribution, i.e. whether the item’s occurrence rate is balanced across contexts of 
language use. This means that in contrast to pervasiveness, which is only concerned with 
the presence/absence of an item, evenness of distribution compares sub-frequencies across 
units. It follows that dispersion measures fall into two groups, depending on whether they 
quantify pervasiveness or evenness of distribution.  

The present paper will be (primarily) concerned with evenness measures, where indices 
usually range from 0 to 1, with low values reflecting a clumpy distribution (occurrence in 
only few texts or genres) and high values denoting an even distribution. The purpose of the 
paper is twofold. Our first goal is to survey the corpus-linguistic landscape with regard to 
the measurement of dispersion. We start with a historical perspective on evolving practices 
and trace the origin of some prominent measures across time and disciplines. Our focus will 
be on the recent wave of corpus-linguistic interest in dispersion, which has gained 
momentum after an influential paper by Gries (2008). To chart current research practices, 

1 I would like to thank Jesse Egbert for drawing my attention to the importance of this distinction. 
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we examine the facilities provided by popular software packages for corpus analysis. We 
then conduct a literature survey, to document how corpus linguists typically go about 
measuring dispersion – which kind of corpus parts they compare, what measures they use, 
and what kind of structures they study.  

This stocktaking exercise sets the scene for the second goal if this paper, which is to 
advance our understanding of dispersion measures and promote an informed and wider use 
by researchers. In a first step, we aspire to make transparent the logic underlying a number 
of relatively complex evenness measures, and to draw attention to differences among them, 
most notably their sensitivity to certain distributional features. Following this, we field-test 
indices in data situations that have so far been neglected in the methodological literature. 
To sketch analysis settings that are likely to be relevant (and therefore informative) for 
applied work, we draw on the results of our literature survey, which finds that corpus 
linguists typically measure dispersion across the texts constituting a corpus. We therefore 
complement existing practices in the methodological literature by monitoring the 
performance of indices in these distributional situations. To obtain realistic and 
representative scenarios, our test settings are modeled on actual corpus data. Our analyses 
reveal a number of insights that have so far not been noted and which may serve to direct 
future work on the comparative evaluation of dispersion measures. 

The two goals of our paper translate into the following outline. Section 2 looks at the 
history of dispersion in the analysis of textual data and takes stock of software facilities and 
current research practices. Section 3 then breaks down dispersion measures into their 
elementary components to make clear their logic and (biased) behavior. Section 4 shows 
how we can use corpus data to construct data settings for the comparative evaluation of 
indices. In Section 5, we analyze the behavior of dispersion measures in these data settings 
and Section 6 closes with a summary and discussion. 

2. The measurement of dispersion

Lexical dispersion has been of interest to scholars for more than a century. This section 
starts with a brief historical outline of its measurement and use in linguistics (Section 2.1), 
which allows us to contextualize some methodological issues that have recently been raised 
in corpus linguistics. We pay particular attention to the question of which corpus parts 
should form the basis of analysis (Section 2.2), and close in Section 2.3 with a survey of 
current practices in corpus-based work. 

2.1. A brief history 

Early applications of dispersion measures may be found in the context of language 
pedagogy, where they were used in the compilation of general vocabulary lists. To identify 
common words in Spanish, for instance, Keniston (1920: 86) used as a database ‘a few score’ 
of texts representing various genres (e.g. plays, novels, newspapers) and then looked at the 
percentage of texts containing at least one occurrence of a given item. He then formed 8 
classes of words; items in class 1, for example, occurred in at least 80% of the texts. We will 
refer to this measure as text dispersion (TD) and express it as a proportion (instead of a 
percentage). The threshold for inclusion in Keniston’s (1920) study was .33 (or 33%), which 
yielded a list of 1,322 words. At much the same time, Thorndike (1921a: iii–iv) compiled a 
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list of 10,000 English words, ranked by ‘importance’ or ‘commonness’. The ranking was 
based on ‘credit-numbers’, which combine information on frequency and dispersion across 
41 texts (collections or excerpts) covering different genres such as children’s books, literary 
classics, and newspaper texts (see Thorndike 1921b: 335–340). Vander Beke (1932) carried 
out similar work on French and went as far as ranking words primarily according to 
dispersion. His word book lists 6,067 items based on range (R), i.e. the number of texts (88 in 
total, drawn from five different genres) in which they appeared. At the outset, then, 
practitioners were exclusively concerned with the pervasiveness of items across texts. 

The 1960s and 1970s saw a period of increased methodological interest in dispersion. This 
lexicographic wave of research led to the introduction of several new measures (D, Juilland 
& Chang-Rodríguez 1964; D2, Carroll 1970; S, Rosengren 1971). Thus, Juilland & Chang-
Rodríguez (1964) were unsatisfied with the lack of sensitivity of TD and R and essentially 
argued for pervasiveness to be replaced by evenness as the feature of main interest. They 
proposed a more nuanced measure, D, which captures the evenness of sub-frequencies and 
is standardized to the unit interval [0;1], with 1 indicating a perfectly even distribution. 
Their study compared 5 macro-genres of 100,000 words each (drama, fiction, academic 
writing, news, and essayistic literature).2  

The early 21st century has seen a renaissance of work on the measurement of dispersion, 
with an influential paper by Gries (2008) putting it on the corpus-linguistic research agenda. 
The ongoing discourse between methodology and application has brought about yet further 
indices (DP and DPnorm, Gries 2008; DA, Burch et al. 2017; DKL Gries 2020, 2021), as well as an 
application of such measures to domains beyond lexis (see Section 2.3). A theme that has 
received some attention recently is the unit of analysis, i.e. across which units, or stretches 
of text, occurrence rates should be compared. We will deal with this question in more detail 
in the next section. 

Before we go further, however, let us jot down the most important measures that have 
emerged over the past 100 years. Figure 1 shows these in chronological order, along with 
the references indicating where (to our knowledge) they first appeared in the linguistic 
literature and the distributional feature they measure (pervasiveness vs. evenness). We will 
deal with the individual measures in more detail in Section 3. 

2 It is of interest to note that the material representing these ‘lexical worlds’ was based on an elaborate 
sampling design, which involved the random selection of texts and the systematic sampling of sentences at 
roughly equal-spaced intervals from these texts (see Juilland & Chang-Rodríguez 1964: XIV–XXVII). 
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Figure 1. The emergence of dispersion measures across time and disciplines. 3

2.2. The unit of analysis 

It has been argued in recent methodological work that linguistically meaningful units 
should form the basis of dispersion analysis (e.g. Burch et al. 2017; Egbert et al. 2020). Thus, 
Egbert et al. (2020: 91–92) state that the use of equal-sized corpus parts constitutes ‘the 
traditional approach to measuring lexical dispersion’; ‘in practice, dispersion analyses are 
[…] based on arbitrary corpus parts’. Support for this assessment is given by listing 8 studies 
(published between 2001 and 2016), which pursue pedagogical or lexicographic goals, 
similar to the 20th-century work referenced in the previous section. 

In light of our historical outline, however, it would seem that the label ‘traditional’ – if 
taken literally – may require qualification. After all, early work on lexical dispersion did 
rely on meaningful units of analysis. Keniston (1920), Thorndike (1921), and Vander Beke 
(1932) measured dispersion across texts, and the lexicographic wave in the second half of 
the 20th century also drew on meaningful units: Juilland & Chang-Rodríguez (1964: XVI) 
compared macro-genres; Carroll (1970: 63, 65) applied measures to the 15 subgenres in 
Brown and pondered over the possibility of using smaller units (e.g. authors or author-year 
combinations); and Rosengren (1971: 120) obtained tallies for five newspaper sections 
(editorials, politics, arts, business, and miscellaneous). A notable exception is the study by 
Lyne (1985), where a corpus of business correspondence letters, i.e. a relatively uniform 
collection of texts, was divided into parts of equal size.  

It would therefore appear that the use of equal-sized parts may have largely originated in 
the recent wave of corpus-linguistic work on dispersion – despite the fact that key 
methodological contributions continue(d) to rely on meaningful units (e.g. Gries 2008, 2010). 
In search of an explanation, Egbert et al. (2020) note three possible reasons: (i) the 
computational simplicity associated with using equal-sized parts; (ii) the false belief that 
partitions must have the same size; and (iii) the assumption that the choice of unit may be 
inconsequential.  

3 Images with the symbols  in the figure caption have been published under the Creative Commons 
Attribution 4.0 license (CC BY 4.0, http://creativecommons.org/licenses/by/4.0) in the accompanying OSF 
project (https://osf.io/nhw2y). All figures were drawn using the R package ‘lattice’ (Sarkar 2008). 

http://creativecommons.org/licenses/by/4.0
https://osf.io/nhw2y/?view_only=559245a7e82a4c0092df47f0113d45ea
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A further factor related to ease of implementation may be found in the facilities provided by 
existing corpus analysis tools. Let us therefore examine a number of widely used software 
packages with regard to the dispersion measure(s) they offer, and the units of analysis that 
can be formed. Our findings are summarized in Table 1, where resources are listed in 
alphabetical order:  

• AntConc (Anthony 2022) calculates dispersion across the corpus files imported into the 
software, as well as within these files based on a user-specified number of equal-sized 
parts (default: 10) 

• CQPweb (Hardie 2012) currently only offers experimental support, and it is unclear what 
units are being formed 

• LancsBox X (Brezina and Platt 2023) tabulates dispersion scores across the corpus files 
that are loaded into the software 

• Sketch Engine (Kilgarriff et al. 2014) only offers a dispersion-adjusted frequency measure 
(the average reduced frequency; Savický and Hlaváčová 2002), which is based on corpus 
parts of equal size 

• WMatrix (Rayson 2009) calculates dispersion across the file folders created using the 
web interface4 

• WordSmith Tools (Scott 2015) divides the corpus into a user-specified number of equal-
sized parts (default: 8) 

The summary in Table 1 shows considerable overlap with regard to the measures that are 
currently implemented (R, TD, DP, D). In terms of unit of analysis, however, the picture is 
mixed. Two packages that stand out are AntConc and LancsBox X, which provide ample 
support for custom units of analysis, provided these are represented by the imported corpus 
files. 

Table 1. Dispersion analysis options implemented in corpus analysis software 

   Unit of analysis 

Software Version Measures Parts Files 

AntConc 4.2 R TD D DP ●a ● 
CQPweb 3.3.17 R  D DP ? ? 
LancsBox X 3 R TD D DP  ● 
SketchEngine  n/a Average reduced frequency ●  
WMatrix   5 R   DP  ●b 
WordSmith Tools  6 R TD D  ●  

Notes. a Parts-based measurements are (quite sensibly) only made within corpus files; b 
Feasible only for a relatively small number of units, since files must be uploaded individually  

 

Seeing that some software packages, at least in their latest versions, allow for measurements 
to be made at the text or genre level, we decided to take another look at existing practices 
by corpus linguists.  

2.3. A survey of corpus-based work 

                                                      
4 The current version seems to require corpus files to be uploaded individually, which would make it 
cumbersome to obtain dispersion across individual text files. 
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To gain an overview of the measurement of dispersion in recent corpus-based work, we 
examined 730 articles published between 2008 and 2022 across four corpus-linguistic 
journals (see Sönning 2024 and Web Appendix 1 for details5). The search term ‘dispersion’ 
narrowed this list down to 121 documents, and 38 of these assessed dispersion in one of the 
corpus-linguistic senses described in Section 1. We concentrate on studies that feature 
numerical summaries, which left us with 35 research articles.6 These were annotated for the 
following variables: 

• The dispersion measure(s) used 
• The unit of analysis (e.g. texts, genres, corpus parts) 
• The linguistic structure studied (e.g. lexical, phraseological) 

Table 2 sets out the findings of our review. Apart from the overall distribution of the three 
study features, it provides a diachronic perspective on these by subdividing counts into 
three (5-year) periods. Before we take a closer look at these results, let us briefly consider 
the overall rate of dispersion reports in the literature, which amounts to 5% of the studies 
(i.e. 38 out of 730). This relatively low percentage seems to support Gries’ (2008; 2020) 
continuing concerns about the underuse of dispersion in applied work. 

Looking at the findings reported in Table 2, the following points are noteworthy: 

• While most of the indices listed in Figure 1 appear at least once in our survey, the 
most popular measures are R, TD, and DP. We therefore observe considerable overlap 
with the options implemented in corpus-analysis software (cf. Table 1). Note that the 
variety found in period I is primarily due to Gries (2008), who studied the behavior 
of DP, D, D2, and S.  

• The vast majority of studies rely on texts as the unit of analysis; only 11% use 
arbitrary corpus parts. This suggests that Egbert et al.’s (2020) diagnosis does not 
extend to the work reported in corpus-linguistic journals. It is also of interest to note 
that the preference for meaningful units of analysis is stable over time.  

• We observe that just over half of the studies are concerned with lexical items. 
Apparently, the domains of application have diversified over time. 

If we accept Table 2 as giving a rough reflection of existing practices in corpus-based 
research, we can summarize by saying that corpus linguists primarily rely on R, DP, and TD 
and typically apply these measures to meaningful units of analysis. 

 

 

 

 

 

 

                                                      
5 https://osf.io/nhw2y 
6 We excluded two studies that only relied on a visual inspection of dispersion plots, and one study that 
applied a measure of dispersion that looks at the median number of words between consecutive occurrences of 
an item in the corpus. This index is similar to Savický and Hlaváčová’s (2002: 220) Average Waiting Time.  

https://osf.io/nhw2y/?view_only=559245a7e82a4c0092df47f0113d45ea
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Table 2. Dispersion analysis in corpus-based work: Survey of articles in corpus-linguistic journals 

    Five-year periodsa 

Study feature N (%)  I II III 

Dispersion measureb       
R 14 (34%)  3 4 7 
DP 11 (27%)  1 4 6 
TD 9 (22%)  1 2 6 
D 3 (7%)  1 1 1 
D2 2 (5%)  2   
S 1 (2%)  1   
DA 1 (2%)    1 

       

Unit of analysis       
Text 27 (77%)  5 7 15 
Equal-sized corpus part 4 (11%)   2 2 
Genre 3 (9%)  1 1 1 
Chapter 1 (3%)   1  

       

Structurec       
Lexical 21 (58%)  5 6 10 
Phraseological 12 (33%)  1 4 7 
Syntactic 3 (8%)  1 1 1 
       

Number of studies 35   6 11 18 

Notes. 
a Periods: I (2008–2012), II (2013–2017), III (2018–2022) 
b Counts do not sum to 35 since three studies report several measures  
c Counts do not sum to 35 since one study analyzed different structures 

 

3. The nuts and bolts of dispersion measures 

In Section 2.1, we touched upon a variety of dispersion indices; let us now consider them in 
more detail. Our form of exposition deviates from that used in other texts, which often rely 
quite heavily on (sometimes disconnected) mathematical notation. This style of 
presentation, despite its explicitness and economy, may not be conducive to an informed 
use by practitioners. We therefore build on and extend earlier work in two ways. For one, 
we use unified notation, which streamlines the discussion and reveals parallels between 
computational procedures. Further, we quite literally look at the inner workings of formulas 
using, as far as practicable, graphical illustrations; this may allow a wider readership to form 
a more intuitive understanding of these indices. A constant focus will be on the contribution 
of individual units (e.g. text files) to the obtained scores, and how measures respond to 
extreme sub-frequencies, i.e. texts with relatively many or few occurrences of the item in 
question. Once we have introduced our illustrative data set (Section 3.1), we will discuss the 
individual measures in chronological order (cf. Figure 1). R code for the following 
computations and visualizations can be found in the OSF project associated with this article 
(https://osf.io/nhw2y/). 

 

https://osf.io/nhw2y/
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3.1. Illustrative data 

Our illustrative data, which are modeled on the distribution of which in the Brown Corpus 
(Francis and Kučera 1964), contain 𝑘𝑘 = 10 texts of 1,000 words each. In this mini-corpus, we 
obtain the following text-specific counts for which: 0, 1, 2, 4, 4, 5, 8, 8, 11, 17. Since our texts 
are 1,000 words long, these are at the same time normalized frequencies, i.e. occurrences per 
thousand words (ptw). We will refer to these as occurrence rates. They appear in Figure 2, 
where each text is represented by a dot.  

 

 

Figure 2. Illustrative set of text-specific occurrence rates.  

 

Next, we define a set of variables and use the subscript i to refer to a specific text. Since each 
text has 1,000 words, the word count (𝑊𝑊𝑖𝑖) and the word share (𝑤𝑤𝑖𝑖) are constant across texts 
(1,000 words; .10 or 10% of the corpus). For each text, we also have a token count (𝑇𝑇𝑖𝑖), the 
number of occurrences of the item. Based on these token counts, which range from 0 to 17, 
we can determine the token share for each text (𝑡𝑡𝑖𝑖); it ranges from 0 (0 out of 60) to .28 (17 
out of 60). Finally, 𝑅𝑅𝑖𝑖 will denote the occurrence rate of an item in text i. We kindly ask the 
reader to notice (and accept) upper-case R’s double duty in the present paper, as it is also 
used as a shorthand for range. This gives us the following quantities: 

• 𝑊𝑊𝑖𝑖 –word count for text i 

• 𝑇𝑇𝑖𝑖 – token count for text i 

• 𝑤𝑤𝑖𝑖 – text i’s share of the total number of words (word share)  

• 𝑡𝑡𝑖𝑖 – text i’s share of the total number of tokens  (token share) 

• 𝑅𝑅𝑖𝑖 – occurrence rate for text i 

Note how 𝑤𝑤𝑖𝑖 and 𝑡𝑡𝑖𝑖 are the proportional variants of their uppercase counterparts (𝑊𝑊𝑖𝑖 and 
𝑇𝑇𝑖𝑖). We can define a similar quantity based on the occurrence rates 𝑅𝑅𝑖𝑖, by first summing 
over all rates and then dividing each rate by this sum. We refer to this proportional quantity 
(𝑟𝑟𝑖𝑖) as a rate-based proportion: 

• 𝑟𝑟𝑖𝑖 – text i’s share of the sum of all rates (a rate-based proportion). 

Table 3 lists these quantities for our hypothetical corpus. Note that, since texts have the 
same length, 𝑡𝑡𝑖𝑖 is proportional to 𝑟𝑟𝑖𝑖. 
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Table 3. Quantities for the calculation of dispersion measures 

Variable Label 1 2 3 4 5 6 7 8 9 10 

Word count Wi 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 
Word share wi .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 

Token count Ti 0 1 2 4 4 5 8 8 11 17 
Token share ti .00 .02 .03 .07 .07 .08 .13 .13 .18 .28 

Rate (ptw) Ri 0 1 2 4 4 5 8 8 11 17 
Rate-based proportion ri .00 .02 .03 .07 .07 .08 .13 .13 .18 .28 

 

 

3.2. TD and R 

The calculation of TD and range (R) does not require much explanation: Since the item 
appears in 9 of the 10 texts, R is 9 and TD is .90. Even though R and TD give essentially the 
same information, we would prefer to list them as separate measures for two reasons. First, 
it is difficult to interpret and compare R scores without knowledge of (or reference to) 𝑘𝑘, the 
total number of units. The proportional nature of TD, in contrast, yields a standardized score 
that can in principle be compared across corpora (and studies), and which is on the same 
scale as most other dispersion indices (i.e. the unit interval [0;1]). Further, TD clarifies the 
unit of analysis, i.e. that dispersion is tabulated across texts. Some scholars prefer to treat R 
and TD as one and the same measure, which is also sensible. In any case, the distinction is 
immaterial for the purposes of the present study, since our focus will be on evenness 
measures, to which we now turn. 

3.3. D 

As mentioned above, D was proposed by Juilland & Chang-Rodríguez (1964: LIII) as a 
refinement over R and TD. It also laid the foundation for what has become the established 
scaling of dispersion measures, where 0 indicates a maximally uneven and 1 a perfectly 
balanced distribution. In the following formula, s refers to the (population) standard 
deviation7 of the occurrence rates 𝑅𝑅𝑖𝑖, and m denotes their mean; k is the number of texts (or 
units): 

(1) 1 − 𝑠𝑠
𝑚𝑚 √𝑘𝑘−1

 

Let us take a closer look at (1). Similar to the formulas for most other measures, it contains a 
fraction. We then pay particular attention to the numerator, since it tells us what 
determines the magnitude of the measure. The denominator usually only serves to map the 
score to the unit interval [0;1]. We therefore note that the magnitude of D primarily 
depends on s. Since the fraction is subtracted from 1 (which serves to reverse the scaling, so 

                                                      
7 The formulas for the population and sample standard deviation (SD) differ. In line with Juilland & Chang-
Rodríguez’ (1964: LIII), most methodological work on dispersion calculates D using the population SD (e.g. 
Carroll 1970; Lyne 1985, Biber et al. 2016). Gries (2008: 407) uses the sample SD, which explains why he obtains 
negative values for some distributions (2008: 412). In his later work, Gries (2020: 103) uses the population SD. 
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that 1 indicates balance), greater values of s produce smaller values of D: More variable 
occurrence rates reflect a less even distribution and therefore yield smaller values of D.  

The standard deviation is calculated based on the squared distance of rates from their mean. 
This is illustrated in Figure 3, where the area of the individual squares is proportional to the 
relative contribution of each text to the overall D score. The denominator in (1) includes two 
terms, which have different functions: Dividing by m makes the measure independent of the 

average occurrence rate, and dividing by √𝑘𝑘 − 1 ensures that the measure ranges between 0 
and 1. 

 

 

Figure 3. Formula for D: The squared deviation of occurrence rates from their mean.  

 

It has been noted that the standard deviation is not an ideal measure of variability for word 
frequencies, since these tend to have a skewed distribution (e.g. Rosengren 1971: 118). This 
is because, upon squaring, unusually high occurrence rates will have a considerable effect 
on the magnitude of s. However, since m is likewise sensitive to outliers, their effects tend 
to cancel out, which means that D is not affected by outliers as much. A more serious issue, 
which has been pointed out by Biber et al. (2016: 443), is the fact that the value of D 
systematically varies with the number of texts k: As k increases, D becomes larger. This 

behavior, which is due to the term  √𝑘𝑘 − 1 in the denominator, makes D unattractive for 
dispersion analyses at the text level.8 

3.4. D2 

Carroll (1970) proposed a measure of dispersion based on the information-theoretic concept 
of entropy, which describes a distribution of probabilities. High entropy means 
unpredictability (see Oakes 1998: 58-59): In a situation where there are five possible events, 
entropy is highest if they are equally likely, since we cannot make a decent prediction as to 
which event will occur. Applied to dispersion, the predictive task is to forecast where (i.e. in 
which unit) an item will occur. The number of possible events then corresponds to the 
number of units (or texts). If an item is evenly dispersed, its location is unpredictable, since 

                                                      
8 For instance, the COCA-based word frequency data provided on the website www.wordfrequency.info 
calculates D at the text-level. With more than 400,000 texts in the corpus, this produces high dispersion scores 
even for rare lemmas like neuroanatomy (.61) and coalmine (.72) (see 
https://www.wordfrequency.info/samples/lemmas_60k.txt). 

https://www.wordfrequency.info/samples/lemmas_60k.txt


11 
 

(if texts have the same length) it is equally likely to occur in each. High entropy therefore 
reflects high dispersion.  

The formula we will give for D2 is a slightly rearranged version of the original.9 Recall that 
𝑟𝑟𝑖𝑖 refers to the rate-based proportions (cf. Table 3).  

(2) 
∑ 𝑟𝑟𝑖𝑖 log2

1
𝑟𝑟𝑖𝑖

𝑘𝑘
𝑖𝑖

log2 𝑘𝑘
 

Again, the denominator merely ensures that D2 ranges between 0 and 1. The main action 
takes place in the numerator, which is the sum of k product terms – one for each text. In a 
perfectly balanced scenario, each text has the same rate-based proportion: Each 𝑟𝑟𝑖𝑖 is then 

equal to 
1
𝑘𝑘
. In Figure 4, all points would then be sitting on the line, which marks 

1
𝑘𝑘
. In this 

balanced case, the product term for each text (𝑟𝑟𝑖𝑖 log2
1
𝑟𝑟𝑖𝑖

) reduces to log2
1
𝑘𝑘
. The sum of these 

terms is then equal to the denominator (log2 𝑘𝑘). To appreciate how much a text contributes 

to D2, we can compare its product term (𝑟𝑟𝑖𝑖 log2
1
𝑟𝑟𝑖𝑖

) to the balanced analogue (log2
1
𝑘𝑘
). The 

difference reflects the amount by which it deviates from the balanced scenario, and hence 
its relative contribution to the value of D2.  

In Figure 4, the absolute values of these differences are shown using grey spikes, which are 
aligned at 0. We observe that D2 responds differently to text-specific shares above and below 
the horizontal line. Consider, for instance, texts 5 and 7. Even though they deviate from .10 
by the same amount, their relative contribution to D2 differs: Text 5 affects the value of D2 
more than text 7. For comparison, consider, in Figure 2 above, the size of the grey squares 
for texts 5 and 7, which are identical – in other words, D treats them even-handedly. 

 

 

Figure 4. The contribution of each text to the value of D2.  

 

                                                      
9 The version of D2 quoted by Gries (2020: 103), using our notation, is   

−∑ 𝑟𝑟𝑖𝑖 log2 𝑟𝑟𝑖𝑖
𝑘𝑘
𝑖𝑖
log2 𝑘𝑘

. It is easier to make sense of 

the formula without the minus sign before the summation in the numerator, and we therefore get rid of it: 

−∑ 𝑟𝑟𝑖𝑖 log2 𝑟𝑟𝑖𝑖
𝑘𝑘
𝑖𝑖
log2 𝑘𝑘

=
∑ 𝑟𝑟𝑖𝑖 log2

1
𝑟𝑟𝑖𝑖

𝑘𝑘
𝑖𝑖

log2 𝑘𝑘
. 
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This behavior of D2, which is even more apparent when comparing texts 1 and 10, was 
pointed out by Lyne (1985: 107, 114), who demonstrated that the measure not only 
‘penalizes zeros’ but also shows a disproportionate sensitivity to ‘low sub-frequencies’, i.e. 
text-specific occurrence rates below average. While this behavior of entropy may be useful 
for information-theoretic purposes, it is not at all clear whether it is desirable for the 
measurement of dispersion in textual data (see Lyne 1985: 115).  

3.5. S 

Rosengren (1971) proposed the index S; using the shorthand symbols introduced in Table 3, 
it is calculated using the following formula: 

(3) 
�∑ �𝑤𝑤𝑖𝑖𝑇𝑇𝑖𝑖𝑘𝑘

𝑖𝑖 �
2

𝑁𝑁
 

Here, N is the total number of occurrences of the item (across all texts). Again, our attention 

centers on the numerator, and we note that each text again contributes one term (�𝑤𝑤𝑖𝑖𝑇𝑇𝑖𝑖) to 
S. In a perfectly balanced setting, in order for the equation to yield a value of 1, the 

numerator must equal N. Working backwards, the sum of the product terms (∑ �𝑤𝑤𝑖𝑖𝑇𝑇𝑖𝑖𝑘𝑘
𝑖𝑖 ) 

must therefore be equal to the root of N (i.e. √𝑁𝑁), and each term (�𝑤𝑤𝑖𝑖𝑇𝑇𝑖𝑖) must accordingly 

equal √𝑁𝑁/𝑘𝑘. To see how much each text contributes to S, we can compare �𝑤𝑤𝑖𝑖𝑇𝑇𝑖𝑖 to the 

balanced analogue (√𝑁𝑁/𝑘𝑘) the difference again denoting its relative contribution to S. 

 

 

Figure 5. The contribution of each text to the value of S.  

 

In Figure 5, these ‘text effects’ are again shown using grey spikes. We observe that S shows 
similar behavior to D2: Texts with a relatively low sub-frequency contribute more to its 
value. This feature was hinted at by Rosengren (1972: 118) and demonstrated by Lyne (1985: 
109) who observed that S penalizes zeroes to a greater extent than D2. 

3.6. DP 

Gries (2008: 415-419) introduced the ‘deviation of proportions’ (DP) as a dispersion index. 
While this measure had appeared in other disciplines under different names (e.g. Wilcox 
1973: 328), Gries (2008) marks its first application to corpus statistics as well as its 
generalization to units of different size. By an unfortunate accident of history, Gries (2008) 
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introduced DP with reversed scaling (with 0 indicating evenness), thus deviating from the 
directionality ingrained in earlier indices (TD, D, D2, S). Following Burch et al. (2017: 193), 
we reverse its scaling and use the subscripted shorthand DP to set it apart notationally from 
the inverted original (i.e. DP). Over the years, a number of minor modifications have been 
proposed (e.g. Lijffijt and Gries 2012; Egbert et al. 2020: 99), but these primarily affect DP’s 
behavior in boundary conditions; at its core, the computational procedure has not been 
altered. We will quote Gries’ (2008: 415) original formula (though reversed in scaling, i.e. 
subtracted from 1), which suffices for our present purposes:10 

(4) 1 − ∑ |𝑡𝑡𝑖𝑖−𝑤𝑤𝑖𝑖|𝑘𝑘
𝑖𝑖

2
 

The rationale underlying DP is best considered visually. Figure 6 shows the text-specific 
word shares 𝑤𝑤𝑖𝑖 (horizontal line) and token shares 𝑡𝑡𝑖𝑖 (points) for our corpus. If the item were 
dispersed evenly across the 10 texts, the points would be on the line: Each text’s token share 
would then be equal to its word share. The black vertical lines reflect deviations from a 
perfectly even distribution.  

 

  

Figure 6. Formula for DP: The deviation of token shares from the word shares (which are 
constant across texts here).  

 

Looking at the numerator of (4), we note that the magnitude of DP depends on the sum of 
the absolute values of these deviations. The further the points lie from the horizontal line, 
the greater this sum, and – since we subtract from 1, similar to D – the smaller the value of 
DP. This means that the contribution of each text, which is again indicated in Figure 6 with 
grey spikes, is proportional to these distances. It is evident that DP does not penalize low or 
high occurrence rates. 

3.7. DA 

The measures considered so far are all based on one score per text. In contrast, DA (Burch et 
al. 2017) considers all pairwise distances among texts.11 This is illustrated for our exemplary 
data in Figure 7, where texts form a circle. Each text is represented by its occurrence rate 
(𝑅𝑅𝑖𝑖) (in boldface), with its ID appearing in parentheses. The arrows originating from each 

                                                      
10 For the analyses in Section 5, we use the modified version by Egbert et al. (2020: 99). 
11 While Burch et al. (2017) credit DA to Wilcox’s (1973: 329) mean difference analog, the measure in fact 
represents a special case of Gini’s (1921) mean difference. 
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text are pointed at another text, and the length of these arrows is proportional to the 
distance between the two texts (on the 𝑅𝑅𝑖𝑖 scale). Thus, a text surrounded by a large ball of 
arrows is an outlier since its 𝑅𝑅𝑖𝑖 value lies far away from the other occurrence rates. 

 

 

Figure 7. Calculation of DA: All pairwise distances are considered.  

 

For our 10 texts, there are 45 distances to consider. Even though it is not immediately 
apparent from the formula for DA, which is given in (5) below, the index essentially reflects 
the mean over these distances. The further these occurrence rates are apart, the greater this 
average, and – since we subtract from 1, similar to D and DP – the smaller the value of DA.  

(5) 1 −
∑ ∑ �𝑅𝑅𝑖𝑖−𝑅𝑅𝑗𝑗�𝑘𝑘

𝑗𝑗=𝑖𝑖+1
𝑘𝑘−1
𝑖𝑖

𝑘𝑘(𝑘𝑘−1)
2

× 1

2
∑ 𝑅𝑅𝑖𝑖
𝑘𝑘
𝑖𝑖
𝑘𝑘

 

To recognize the contribution each text makes to DA, we can mentally average over the 
bundle of arrows departing from each text in Figure 7: Note how text 10 clearly sticks out. 
The grey spikes in panel (b) show the relative size of these averages. We find that DA is 
similar to D and DP in that it does not handicap occurrence rates below average (contrary to 
S and D2). 

Wilcox (1973: 341) and Burch et al. (2017: 210) argue that DA has some advantages over DP, 
and it therefore receives a cautious recommendation from both studies. Gries (2020: 116), on 
the other hand, points out that DA is computationally much more expensive, especially 
when text files are the unit of analysis.12 

3.8. DKL 

The most recently proposed measure, DKL (Gries 2020: 103-104; 2021: 15, 20), is based on the 
Kullback-Leibler divergence, another information-theoretic measure. Using the notation 
listed in Table 3, and bringing the scaling in line with that used for the other measures, the 
formula for DKL is: 

(6) 𝐷𝐷𝐾𝐾𝐾𝐾 = 𝑒𝑒
−∑ 𝑡𝑡𝑖𝑖 log2

𝑡𝑡𝑖𝑖
𝑤𝑤𝑖𝑖

𝑘𝑘
𝑖𝑖  

                                                      
12 While this certainly applies to the basic formula, Wilcox (1973: 343) gives a computational shortcut, which is 
much more efficient (see https://lsoenning.github.io/posts/2023-12-11_computation_DA/). 

https://lsoenning.github.io/posts/2023-12-11_computation_DA/
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While it is difficult to isolate and visualize the contribution of individual texts via algebraic 
manipulation, a careful inspection of the formula allows us recognize the underlying logic. 
To make sense of (6), we get rid of the minus sign before the summation: 

(7) 𝐷𝐷𝐾𝐾𝐾𝐾 = 𝑒𝑒
∑ 𝑡𝑡𝑖𝑖 log2

𝑤𝑤𝑖𝑖
𝑡𝑡𝑖𝑖

𝑘𝑘
𝑖𝑖  

Since the exponentiation of a sum (𝑒𝑒𝑎𝑎+𝑏𝑏+𝑐𝑐) is equivalent to the product of the exponentiated 
parts of the sum (𝑒𝑒𝑎𝑎 × 𝑒𝑒𝑏𝑏 × 𝑒𝑒𝑐𝑐), the formula for DKL can be rewritten as 

(8) 𝐷𝐷𝐾𝐾𝐾𝐾 = 𝑒𝑒𝑡𝑡1 log2
𝑤𝑤1
𝑡𝑡1  × 𝑒𝑒𝑡𝑡2 log2

𝑤𝑤2
𝑡𝑡2 × … × 𝑒𝑒

𝑡𝑡𝑘𝑘 log2
𝑤𝑤𝑘𝑘
𝑡𝑡𝑘𝑘  

This means that DKL is the product of k terms, one for each text. If the number of tokens in a 
text is proportional to its length, i.e. if 𝑡𝑡𝑖𝑖 equals 𝑤𝑤𝑖𝑖, then log2

𝑤𝑤1
𝑡𝑡1

 reduces to log2(1), which is 

0. The term  𝑒𝑒𝑡𝑡1 log2
𝑤𝑤1
𝑡𝑡1  then becomes 𝑒𝑒0, which is 1. This means that for a perfectly balanced 

distribution, we obtain a DKL score of 1 (i.e. 1 × 1 × … × 1).  

It is difficult, however, to use the formula to isolate the contribution of an individual text 
like we have done for the other measures. In Section 5, we will use a different method that 
allows us to quantify the contribution of individual texts to the dispersion score. It will be 
observed that, for our illustrative set of data, DKL groups with S and D2 in that it imposes a 
penalty on lower sub-frequencies. 

3.9. Summary 

We have examined dispersion measures and tried to understand their structure and 
behavior in visual terms. This has allowed us to see how they process corpus-based counts, 
and their degree of (im)partiality towards low and high sub-frequencies. We were thereby 
able to extend the insights provided by Lyne (1985) to indices that have emerged more 
recently: While S, D2, and DKL inflict a handicap on low sub-frequencies, D, DP, and DA treat 
low and high sub-frequencies equal-handedly. 

The insights we have gained so far are based on our exemplary data, which resemble the 
distribution of which in the Brown Corpus. While this adds realism to our example, we 
would like to monitor the behavior of dispersion measures in a wider variety of settings. 
The next section describes how we approach this goal.  

4. Toward realistic settings for evaluation studies 

The illustrative data sets used in the methodological literature on dispersion are usually 
didacticized mini-examples, with a small number of (hypothetical) text categories or genres 
(e.g. Gries 2008: 406; Burch et al. 2017: 198; Egbert et al. 2020: 101; Gries 2020: 102; Gries 
2021: 20; Gries 2022: 178; Nelson 2023: 156). Since frequency distributions across smaller 
units of analysis differ from such macro-level tallies, it is not clear whether the insights 
provided by such examples extend to text-level analyses. To develop an intuition for the 
behavior of measures in such settings, then, we must broaden the set of scenarios. This 
section describes an approach to constructing controlled yet authentic conditions for the 
study of dispersion indices when texts form the unit of analysis.  
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To set up realistic data situations, we rely on information extracted from the Brown Corpus; 
the data underlying our analyses are available from TROLLing (Sönning 2024). Specifically, 
we consider the 2,000 most frequent word forms in the corpus and summarize their 
distributional characteristics using two parameters: a measure of central tendency (similar 
to the mean), which indicates how often a word form is used; and a measure of spread 
(similar to the standard deviation), which reflects the extent to which usage rates vary 
across the 500 texts in the corpus. To capture these features, we use the negative binomial 
distribution, which has been applied successfully to word frequency data in previous 
research. For instance, Mosteller and Wallace’s (1964) well-known authorship attribution 
study relied on this distribution, and Church and Gale (1995) demonstrated its capacity for 
modeling text-level word frequencies.  

The negative binomial distribution is an extension of the Poisson distribution and 
specifically designed to model count variables – the number of events that are observed 
over a certain period. For word frequency data, the event of interest is the occurrence of the 
item in question, and the period of observation is the length of the text, measured in the 
number of running words. In contrast to the Poisson, the negative binomial distribution 
includes an additional parameter that describes the text-to-text variability of the item’s 
occurrence rate (see, e.g. Ehrenberg 1982: 59-63 for a concise introduction; Winter and 
Bürkner 2021 for a tutorial aimed at linguists; Long 1997: 217-238 for a thorough treatment; 
Sönning 2023a for a visual explanation). This additional parameter essentially functions like 
a standard deviation, and it therefore provides information about the dispersion of an item: 
If dispersion (in the corpus-linguistic sense) is low, occurrence rates vary widely from text 
to text; if dispersion is high, on the other hand, text-specific occurrence rates will be very 
similar.  

To make matters concrete, consider Figure 8, which shows the frequency of which in the 500 
texts in Brown. Each spike represents a text file, and text files are grouped by (sub)genre. 
The ‘hairy’ appearance of the graph indicates that which is a common word – it appears in 
almost every document. The token distribution across texts is summarized at the right, 
using a histogram: We see that most texts feature fewer than 10 instances. 

 

 

Figure 8. Distribution of which in the Brown Corpus.  
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Figure 9 compares this histogram to the abstraction yielded by the negative binomial model, 
which appears as a black trace. Note that frequencies are now shown as occurrence rates 
(normalized frequency, per thousand words), hence the difference in units on the axes. 
Based on a visual inspection, the fit is quite good, as the model manages to capture the main 
features of the distribution. 

 

 

Figure 9. Model check: Observed distribution of occurrence rates across the 500 texts in 
Brown vs. predicted distribution based on the two-parameter negative binomial model.  

 

We use this procedure to obtain a measure of location and spread for each of the 2,000 most 
frequent word forms in Brown. The 2,000 pairs of parameters are graphed in Figure 10, 
where each point represents a word form. The horizontal axis shows the (log-scaled) 
normalized frequency and the vertical axis shows the (log-scaled) additional parameter of 
the negative binomial distribution, which describes the variation of word rates across texts. 
For visual correspondence to the corpus-linguistic dispersion scale, values decrease from 
bottom to top: Items higher up in the graph are distributed more evenly across the 500 text 
files (i.e. they have higher dispersion).13  

Figure 10 shows the distributional space spanned by the 2,000 most frequent word forms in 
Brown. We use it as a map, to locate a handful of sites that cover a fairly broad (but 
realistic) range of frequency and dispersion levels. For concreteness, we select 
representative items at these sites, which are marked in panel (b). These eight word forms 
(the, for, he, any, my, exactly, built, poet) will provide the distributional settings in which we 
will field-test, as it were, our dispersion measures. Before we turn to this task, however, we 
describe our approach to quantifying the sensitivity of measures to individual texts. 

 

 

                                                      
13 In order to simplify the reading flow, we are skipping a number of details. First, since there are in fact two 
ways in which the negative binomial distribution can be defined (a direct and an indirect parameterization), 
there are two candidates for the additional parameter: the gamma scale and the gamma shape parameter (see 
Sönning 2023b). The R package we have used (gamlss; Rigby and Stasinopoulos 2005) relies on the direct 
parameterization. Figure 10 therefore shows the gamma scale parameter, which describes the variability of 
text-specific occurrence rates. The greater its value, the greater the variation of the occurrence rates. The y-
axis in Figure 10 has therefore been inverted, since high variability in occurrence rates corresponds to low 
dispersion (in the corpus-linguistic sense); see https://lsoenning.github.io/posts/2023-01-
18_dispersion_terminology/. 

https://lsoenning.github.io/posts/2023-01-18_dispersion_terminology/
https://lsoenning.github.io/posts/2023-01-18_dispersion_terminology/
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Figure 10. Negative binomial measures of location (x-axis) and spread (y-axis) for the 2,000 
most frequent word forms in Brown.  

 

5. Sensitivity of measures to distributional patterns 

To sharpen our sense for the behavior of dispersion measures, we analyze their response to 
individual data points, i.e. the texts in our data. For most indices, our discussion in Section 3 
has been able to reveal some interesting features, which had also been noted in earlier work 
(e.g. Lyne 1985). We now rely on a more general method for isolating the effect of 
individual texts, which can be applied to any of the measures listed in Figure 1. Section 5.1 
describes the method and applies it to our illustrative data set. Section 5.2 then explains how 
we use it to investigate different sites on our distributional map. In Section 5.3 we present 
the results. 

5.1. Method 

Our method is straightforward: To quantify the effect a specific text on a dispersion score, 
we observe how the score changes if we remove the text from the data. We will interpret 
this difference as the effect of the text on the dispersion score. In general, we would expect 
the following consequences: 

(a) If we exclude texts with extreme (i.e. very high or very low) frequencies, this will 
produce a more balanced distribution: Dispersion increases. 

(b) If we exclude texts near the center of the distribution, i.e. with a proportionate sub-
frequency, the resulting distribution is less balanced: Dispersion should decrease.  

Let us now apply the method to our mini-corpus. We start by calculating dispersion scores 
for the full data set (i.e. all 10 texts); these appear in Figure 11 as dotted horizontal lines. 
Next, we turn to our data manipulations. Since there are eight unique token counts in our 
data, we can form eight data subsets (of 9 texts each). The dispersion scores we obtain for 
these subsets form a U-shaped profile, which makes sense: When excluding texts with 
extreme occurrence rates (i.e. text 1 or 10), we note an increase in the dispersion statistic. 
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Some measures show steeper gradients, however, especially at the left margin of the plot. 
This is how our method reveals ‘penalization’ of zero and low sub-frequencies. We will 
return to these patterns shortly.  

One issue that arises when comparing the curves shown in Figure 11a is the bounded nature 
of the scale. Due to floor and ceiling effects (at 0 and 1), variation is constrained near the 
endpoints. As a result, measures that produce relatively high scores for a specific set of 
frequencies may appear to be less affected by our manipulation. Measures that yield values 
near the midpoint of the scale (.50), on the other hand, have more room to vary. Consider 
D2, for instance, which produces the highest dispersion scores: Its profile is relatively flat. 
DA, on the other hand, shows a more pronounced bend. To remove this scaling artefact and 
effect better comparability between indices, we will transform scores to the logit scale14 and 
redraw the graph. Figure 11b shows the result: The profiles for DA and DKL have been 
somewhat flattened, while the vertical range for D2 and S has been stretched. Since we are 
primarily interested in comparisons among measures, we will give preference to the logit 
scale in the following analyses. 

 

 

Figure 11. Dispersion scores for the modified data sets on the (a) dispersion scale and (b) 
logit scale.  

 

To be able to make direct comparisons among measures, we must now look for a way to 
quantify text effects. It turns out that the effect of a specific text on the dispersion score can 
be assessed by comparing, in Figure 11, the points along the U-shaped profiles to the dotted 
reference lines. Our next step is therefore to calculate these differences and then compare 
them across measures. That is, we are asking by how much, and into what direction, scores 
change if we remove a text. An answer can be given for each measure and token count; we 
will refer to this difference as the ‘text effect’.  

Figure 12 shows these differences, or text effects, on the logit scale. We would read this 
graph as follows: First, we locate the black horizontal line, which marks a difference of zero. 

                                                      
14 Since the logit-transformation does not accept proportions of 0 and 1, prior to transformation all dispersion 
scores below .001 and above .999 were replaced with .001 and .999, respectively. 
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Values near this line indicate that the removal of the text had little effect on the dispersion 
statistic. Points below this reference line, on the other hand, indicate that a text negatively 
affects the dispersion score. Thus, if its exclusion yields a more even distribution (producing 
the U-shapes in Figure 12), this means that its presence in the original data set has a 
negative influence on the dispersion score. We will refer to the traces shown in Figure 12 as 
sensitivity profiles. We observe the most dramatic differences among measures at the left 
end of the graph (for text 1), which shows the effect of a text with a sub-frequency of 0.  

 

 

Figure 12. Sensitivity profiles for our illustrative data set.  

 

5.2. Construction of sensitivity profiles for distributional patterns 

We would now like to run this kind of sensitivity analysis at a larger scale, i.e. by 
considering the representative sites identified in Figure 10. The scenario we will study 
mirrors Brown: a corpus of 500 texts, each 2,000 words long. Our goal is to construct 
sensitivity profiles similar to those in Figure 12. The remainder of this section describes our 
method and may be skipped without loss in continuity. Details about the computational 
implementation may be found in the associated OSF project (https://osf.io/nhw2y/). 

In order to obtain smooth sensitivity profiles for each site on our distributional map, we 
must find a way of averaging out the sampling variation that is inherent in corpus data. 
After all, like any other corpus, Brown is a sample of language use, in this case consisting of 
500 texts. If a different set of texts had been selected, the distributional pattern for a specific 
word form would be different.  

In order to iron out this sampling variation, we need an idealized representation of the 
distributional features of these items. The idea is to find, for each item, a statistical model 
that could plausibly have given rise (in a statistical sense) to the token distributions 
observed in Brown. To this end, we stick to the negative binomial model we have 
constructed for the eight items (cf. Section 4). To see whether the match between data and 
model is satisfactory, we ran graphical model checks similar to the one shown in Figure 9, 

https://osf.io/nhw2y/
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which may be found in Web Appendix 2. These indicate that the negative binomial model 
offers a reasonable abstraction.  

For our present purposes, then, we will assume that, for each item, the difference between 
the token distribution in Brown and the underlying statistical model is due to sampling 
variation. We can then use the statistical model to generate ‘alternative Brown corpora’. 
The token distributions we generate will differ from one another due to sampling variation 
only. This allows us to get a handle on the likely extent of sampling variability, which we 
smoothen by averaging over them.  

We use the model parameters to generate 50,000 token distributions. A token distribution, 
in our case, consists of a set of 500 token counts – one count per text in our imaginary 
corpus. Each of these token distributions is then submitted to the modification procedure 
described above and we record the effect of individual texts – or more specifically: token 
counts – on the observed dispersion score. Since we can only do so for the token counts that 
are attested in the specific token distribution at hand, the results for many simulations will 
have gaps. To fill these, we run a large number of iterations (i.e. 50,000).  

A decision is also needed about the range of token counts to consider. While we are 
interested in monitoring the behavior of measures when confronted with relatively extreme 
sub-frequencies, we want to exclude from consideration frequencies that are unlikely to be 
observed. We put the probabilistic threshold at 1/1000, which means that we exclude those 
token counts that, based on our statistical model, are expected to occur, on average, at most 
once per 1,000 texts (of 2,000 words). This means that unusually low counts and unusually 
high counts are disregarded, which protects us from giving undue attention to unrealistic 
(or rare) situations. 

Using this procedure, we obtain, for each site on our map, a distribution of up to 50,000 ‘text 
effects’ per dispersion measure and token count. Typically, this number will be (much) 
smaller, however, due to inevitable gaps and data sparseness in the tails of the token 
distributions. We then tabulate, for each dispersion measure and distributional setting, the 
median text effect for every relevant token count. The patterns formed by these median text 
effects are the sensitivity profiles we will discuss in the following section. 

5.3. Results 

We come now to the results of our sensitivity analysis, which are shown graphically in 
Figure 13. What drives our interpretation of these profiles is the question of how dispersion 
measures respond to low and high sub-frequencies in different distributional milieus. This 
means that we will pay particular attention to the tails of the profiles. Recall that the token 
counts we consider for exclusion have a probability of occurrence of at least 0.1% in a 2,000-
word text. Since some readers may feel that this likelihood is a rather low, we also add grey 
shading to Figure 13 to denote token counts that have a probability of 1% of being observed.  

Let us first consider the sensitivity of measures to low sub-frequencies (including 0). 
Essentially, we approach Figure 13 by asking whether the patterns we saw in Figure 12 (and 
in Section 3), i.e. that D2, DKL, and S are overly sensitive to lower sub-frequencies, hold in 
other areas of the distributional space. For convenience, the insights we extract from Figure 
13 are summarized in Table 4, where a filled circle (●) indicates relatively strong 
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penalization and an empty circle (○) indicates relatively weak penalization. There are 
several things to note: 

• In the distributional space we have studied, D never penalizes lower sub-frequencies 
• D2, S, and DKL inflict a handicap on low sub-frequencies, but this behavior is 

attenuated for word forms in lower frequency and dispersion bands 
• In the lower frequency ranges (< 100 pmw), none of the measures impose a penalty 

on zero counts 

 

 

Figure 13. Sensitivity profiles for dispersion measures in different distributional settings.  

 

Next, we consider the upper tail of the distributions. For the moment, our focus remains on 
penalization (i.e. the symbols ● ○). The summary in Table 4 shows that the picture is more 
mixed: 

• Overall, D and DP show the most balanced performance, producing at most weak 
penalization against high sub-frequencies 

• In lower frequency bands (< 100 pmw), none of the measures impose a penalty on 
high counts 

In general, then, issues of penalization appear to be more of a concern for items with 
normalized frequencies exceeding roughly 100 pmw. Typically, the number of word forms 
clearing this threshold is somewhere around 1,000: In Brown, roughly 1,000 forms have a 
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frequency greater than 100 pmw; in Leech et al.’s (2001) report for the BNC, about 800 word 
forms exceed this threshold in the spoken part, and 1,100 forms in the written part.  

In the distributional space below this approximate threshold, all dispersion measures show 
markedly different behavior. Most notably, low sub-frequencies exert no appreciable 
leverage on the observed scores. This may be because sub-frequencies of 0 account for the 
greatest share in these frequency bands: exactly is absent from 83% of the texts, built from 
86%, and poet from 92% of the texts. Since low sub-frequencies are so typical, a removal of 
one text (i.e. 1% of the data) appears to carry no weight.  

The sensitivity profiles for exactly, built, and poet show two further features of interest. 
First, in the sensitivity ranges considered here, texts with non-zero token counts typically 
lead to an increase in dispersion. While this response may be quite sensible for sub-
frequencies of 1, texts with a token count of 2 (or higher) should actually yield a decrease in 
dispersion. This is because counts of 2 are already quite high for the three items considered: 
In Brown, only 2.4% of texts feature 2 or more occurrences of exactly, and this figure is 3.8% 
for built and 2.6% for poet. In other words, the behavior of dispersion measures appears 
counterintuitive when confronted with high sub-frequencies of items with an overall 
occurrence rate of roughly 100 pmw. This feature is indicated in Table 4 using open 
triangles (△) – apparently, none of the dispersion measures is immune to this issue. 

 

Table 4. Summary of patterns in Figure 13 

    Low sub-frequencies  High sub-frequencies 

Item Frequency Dispersion  DA DP D D2 S DKL  DA DP D D2 S DKL 

the ++ ++     ● ● ●     ● ● ● 
for + +     ● ● ●     ○ ○ ○ 
he +   ○ ○  ○ ● ●        
any  +  ○ ○  ○ ● ●  ○  ○ ○  ● 
my  −  ○ ○  ○ ○ ○  ● ○  ○  ● 
exactly −           ▲  △ △ △ 
built − −          ▲   △  
poet − −−         △ ▲ △  △ △ 

Note. Key to symbols: ● relatively strong penalization; ○ relatively weak penalization; ▲ 
unresponsive to high sub-frequencies; △ counterintuitive response to relatively high sub-frequencies 

 

The second peculiarity we note concerns the behavior of DP for the low-frequency word 
forms (i.e. exactly, built, and poet). Reference to the numbers underlying Figure 13 confirms 
that the DP score virtually flatlines15 across non-zero sub-frequencies. This behavior 
suggests that DP may lack sensitivity to the kinds of data manipulations we have 
implemented: It appears to show no (or little) response to the removal of a text with 
relatively high sub-frequencies.16 In Table 4, this feature of DP is denoted using filled 
triangles (▲). 

                                                      
15 A similar pattern emerges when calculating the mean (instead of the median) across the simulated data sets. 
16 We would like to thank an anonymous reviewer for strongly suggesting that this observation be explained 
on a theoretical level; the following elaborations represent our attempts to do so. 
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In fact, it has been noted in previous work that there are conditions under which DP does 
not take into account all sub-frequencies in the data. While this was stated quite clearly in 
Wilcox (1973: 339), the nature of these “conditions” is concealed in the computational 
formulas listed in the Appendix of that paper (ibid: 343). Burch et al. (2017: 213) elaborate on 
this feature of DP and discuss a formula given in Wilcox (1973: 343). The basic insight that 
emerges is that if texts have the same length, DP can in fact be computed from a subset of 
the texts: If we determine the average occurrence rate across all texts and then arrange 
them by occurrence rate in decreasing order, DP takes as input only those texts whose 
occurrence rate falls below the overall average. This means that the value of DP does not 
depend on (or reflect) texts with a sub-frequency above average. It follows that it does not 
matter how far above the average a specific occurrence rate is, as DP is unresponsive to its 
magnitude. This is why the sensitivity profile for this index flatlines across sub-frequencies 
greater than 0.  

To make this feature of DP more concrete for the data at hand, we can identify areas on our 
distributional map where the index can lack sensitivity to the magnitude of high sub-
frequencies. We identify these regions using simulation. The idea is to generate prototypical 
token distributions across our map (cf. Figure 10), and then monitor whether the removal of 
non-zero sub-frequencies leads to a change in the DP score. If the removal of a sub-
frequency does not alter the dispersion score, we have identified a spot on the map where 
DP can show the kind of unresponsiveness to high sub-frequencies that we observed for 
exactly, built, and poet.  

We use the negative binomial distribution to generate idealized token distributions across a 
grid of location and spread values. These prototypical distributions17 aim to approximate the 
negative binomial model as closely as possible. In Figure 9, for example, this would be 
observed in a close correspondence between the grey bars and the black profile. 
Importantly, we have to settle on the number and length of texts to produce these token 
distributions. We choose these to reflect the make-up of Brown (500 texts à 2,000 words). 
This means that our map will only tell us about the behavior of DP on this specific corpus 
design. 

The results of our simulation are summarized in Figure 14, which covers the same area as 
Figure 10. For orientation, the top 2,000 word forms in Brown also appear in the graph. To 
get a better sense of the nature of token distributions across the map, thin lines show the 
expected percentage of texts that feature 0 occurrences of the item. This share increases (i) 
toward the left, i.e. as the occurrence rate of the item drops, and (ii) toward the bottom, as 
the dispersion of the item increases. Our attention, however, is centered the grey shading, 
which denotes areas where DP may lack sensitivity to the removal of high sub-frequencies. 
Different shades of grey reflect how likely it is that DP will show this type of 
unresponsiveness, i.e. how likely it is that the index fails to discriminate between token 
distributions that differ in the upper tail. These probability bands are arranged like onion 
shells and the likelihood extends up to .30 (or 30%). 

                                                      
17 As documented in the R scripts that are available in the OSF project (https://osf.io/nhw2y/), we use a 
quantile-based approach to construct these prototypical distributions. It is quite difficult, however, to faithfully 
represent the upper tail of many distributions using 500 data points (the number of texts in our simulation), 
especially if frequency and/or the text-to-text variability in occurrence rates is high, as the negative binomial 
distribution can have a very long and very thin tail in these settings. The grey shading in Figure 14 should 
therefore be considered an approximation. 

https://osf.io/nhw2y/


25 
 

The most striking pattern in Figure 14 is the vertical incision at 0.5 per thousand words, or, 
expressed in term of occurrences in a 2,000-word text (as in Brown), at an average number 
of 1 token per text. This threshold follows from the points we have noted above, i.e. the fact 
that DP is blind to sub-frequencies above average. If this average is above 1 token per text 
(the vertical incision in Figure 14), DP will take into account those texts that have a token 
count of 0 or 1. If we drop a text with a high sub-frequency from the data, the average token 
count can shift below 1, in which case DP will change accordingly: Texts with a count of 1 
are then disregarded. If, on the other hand, the average token count is below 1 already, 
dropping high sub-frequencies will have no effect on the subset of texts that DP embraces: 
Still only those texts with counts of 0 will feed into the dispersion score.  

 

 

Figure 14. Approximate regions where DP is unresponsive to high sub-frequencies in the 
Brown Corpus. Grey shades denote the probability of unresponsiveness.  

 

6. Summary and conclusion 

The overarching goal of the present paper has been to advance our understanding of 
dispersion and its measurement using corpus data. We started out with an overview of the 
gradual evolution of dispersion measures, their implementation in corpus analysis software, 
and their use in current corpus-based work. Our literature survey showed that corpus 
linguists rely on a handful of indices, which they typically apply to meaningful corpus units 
such as text files and (to a lesser extent) genres. This points to a discrepancy between 
applied work and the kinds of hypothetical data settings found in the methodological 
literature. Thus, previous evaluations of indices have dealt with data distributions that 
mirror frequencies observed across groups of texts such as genres. Token distributions 
across text files, however, differ markedly from such aggregated tallies: The number of units 
is (usually much) larger, and units are shorter in length. 
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Since little is known about the behavior of dispersion measures in text-level analysis 
settings, we have directed attention to frequency profiles that mimic text-level token 
distributions. To this end, we relied on the Brown Corpus to build realistic scenarios that 
span a relatively broad but representative portion of the distributional space covered by the 
2,000 most frequent word forms in the corpus. Our interest then centered on the sensitivity 
of measures to relatively high and low sub-frequencies. We relied on a simple form of data 
manipulation to document text effects and introduced the notion of a sensitivity profile, 
which allowed us to quantify these effects and compare them across measures. This allowed 
us to extend the insights provided by Lyne (1985) to a wider range of measures and 
distributional milieus.  

Our evaluation study allowed us to identify indices with desirable properties. Since there 
appears to be no noticeable justification for penalizing lower (or higher) sub-frequencies, 
practitioners may decide to give preference to measures that treat higher and lower sub-
frequencies on a par (i.e. D or DP). It should be stressed that over-sensitivity to zeroes is a 
rather problematic feature in text-level analyses. This is because texts may (and often do) 
differ in length. The shorter the text, the greater the likelihood of observing a count of zero 
– for any item. This may distort dispersion assessments, which appears to be particularly 
problematic when comparing (sub-)corpora across which text lengths differ systematically.   

Perhaps more importantly, the sensitivity profiles we observed for the lower-frequency 
items exactly, built, and poet have demonstrated that the behavior of dispersion measures in 
these areas of the distributional space requires further research. In particular, the responses 
we noted when removing texts with high sub-frequencies appears to be at odds with our 
expectations – extreme sub-frequencies should depress dispersion scores. The behavior we 
did observe, i.e. no notable depression of scores, may arise from the correlation that has 
been observed to hold more generally between frequency and dispersion. Thus, the higher 
the overall frequency of an item, the higher its dispersion (Gries 2022). This correlation may 
help explain the behavior of measures when confronted with high sub-frequencies of low-
frequency items (e.g. exactly, built, poet): If we remove a text with a high sub-frequency, the 
overall (average) frequency of the item drops. Due to the association between frequency and 
dispersion, this will also deflate the dispersion score. And this frequency-induced decrease 
may counteract the increase in evenness we observe in the data. Whether the behavior of 
exactly, built, and poet in fact reflects these opposing forces is a question that remains to be 
explored more fully in future work. As long as we are lacking a thorough understanding of 
such artifacts and their patterned occurrence, we must remain cautious when interpreting 
response profiles observed in these distributional domains.  

Our sensitivity analysis has also drawn our attention to a peculiarity in the behavior of DP, 
which had been noted in earlier work (Wilcox 1973; Burch et al. 2017). The distributional 
space we have constructed using the negative binomial model allowed us to figure out the 
nature of DP’s unresponsiveness to high sub-frequencies, and to see which areas are likely 
to be affected. For the corpus design at hand (500 texts, each 2,000 words long), we were 
able to make sense of the patterns suggested by our simulations. Whether and how these 
insights extend to corpus layouts where texts differ in length is a key area for follow-up 
research.  

Finally, it must also be noted that we have restricted our attention to distributional patterns 
found among the top 2,000 word forms in Brown. This means that the coverage provided by 
our distributional map in Figure 10 is incomplete. Future work must venture into lower-
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frequency domains, which would seem essential for forming an understanding of sensitivity 
patterns for the bulk of lexical items that may be subject to dispersion analysis. We have 
hinted at approximate thresholds below which measures may show a change in behavior. 
However, these observations have been rather coarse and indeed rest on insecure grounds. 
A more systematic and thorough coverage of the distributional space may allow us to derive 
more elaborate response profiles and delineate areas where dispersion measures may be 
expected to exhibit a shift in response style. This kind of cartographic work may produce 
valuable and practicable insights that are relevant to methodologists and applied researchers 
alike.  
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